It’s hot when I accelerate!

Unruh effect and Hawking radiation

Let us discuss one of the most intriguing predictions of theoretical physics. Picture yourself moving through empty space with fixed acceleration, carrying along a particle detector. Despite the fact that space is empty, your detector will click sometimes. The number of clicks will increase if you accelerate further, and stop completely if you bring your acceleration to zero. It is called Unruh effect, and was predicted in 1976.

That’s weird, isn’t it? Well, we have not even scratched the surface of weirdness!

So, more weirdness. The particles will be detected at random times, and will have random energies. But, if you plot how many particles you get at each energy, you’ll get a thermal plot. I mean: the same plot that you would get from a thermal bath of particles at a given temperature T. And what is that temperature?

T = \hbar a / 2\pi c

That is called the Unruh temperature. So nice! All those universal constants… and an unexpected link between acceleration and temperature. How deep is this? We will try to uncover that.

In our previous Physics Napkin we discussed the geometry of spacetime felt by an accelerated observer: Rindler geometry. Take a look at that before jumping into this new stuff.

Has this been proved in the laboratory?

No, not at all. In fact, I am working, with my ICFO friends, in a proposal for a quantum simulation. But that’s another story, I will hold it for the next post.

So, if we have not seen it (yet), how sure are we that it is real? How far-fetched is the theory behind it? Is all this quantum gravity?

Good question! No, we don’t have any good theory of quantum gravity (I’m sorry, string theoreticians, it’s true). It’s a very clear conclusion from theories which have been thoroughly checked: quantum field theory and fixed-background general relativity. With fixed background I mean that the curvature of spacetime does not change.

Detecting particles where there were none… where does the energy come from?

From the force which keeps you accelerated! That’s true: whoever is pushing you would feel a certain drag, because some of the energy is being wasted in a creation of particles.

It's hot when I accelerate!! Ayayay!!!

It’s hot when I accelerate!! Ayayay!!!

I see \hbar appeared in the formula for the Unruh temperature. Is it a purely quantum phenomenon?

Yes, although there is a wave-like explanation to (most of) it. Whenever you move with respect to a wave source with constant speed, you will see its frequency Doppler-shifted. If you move with acceleration, the frequency will change in time. This change of frequency in time causes makes you lose track of phase, and really observe a mixture of frequencies. If you multiply frequencies by hbar, you get energies, and the result is just a thermal (Bose-Einstein) distribution!

But, really… is it quantum or not?

Yes. What is a particle? What is a vacuum? A vacuum is just the quantum state for matter which has the minimum energy, the ground state. Particles are excitations above it. All observers are equipped with a Hamiltonian, which is just a certain “way to measure energies”. Special relativity implies that all inertial observers must see the same vacuum. If the quantum state has minimal energy for an observer at rest, it will have minimal energy for all of them. But, what happens to non-inertial observers? They are equipped with a Hamiltonian, a way to measure energies, which is full of weird inertial forces and garbage. It’s no big wonder that, when they measure the energy of the vacuum, they find it’s not minimal. And, whenever it’s not minimal, it means that it’s full of particles. Yet… why a thermal distribution?

Is all this related to quantum information?

Short story: yes. As we explained in the previous post, an accelerated observer will always see an horizon appear behind him. Everything behind the horizon is lost to him, can not affect him, he can not affect it. There is a net loss of information about the system. This loss can be described as randomness, which can be read as thermal.

Long story. In quantum mechanics we distinguish two types of quantum states: pure and mixed. A pure quantum state is maximally determined, the uncertainty in its measurements is completely unavoidable. Now imagine a machine that can generate quantum systems at two possible pure states A and B, choosing which one to generate by tossing a coin which is hidden to you. The quantum system is now said to be in a mixed state: it can be in any two pure states, with certain probabilities. The system is correlated with the coin: if you could observe the coin, you would reduce your uncertainty about the quantum state.

The true vacuum, as measured by inertial observers, is a pure state. Although it is devoid of particles, it can not be said to be simple in any sense. Instead, it contains lots of correlations between different points of space. Those correlations, being purely quantum, are called entanglement. But, besides that, they are quite similar to the correlations between the quantum state and the coin.

When the horizon appears to the accelerated observer, some of those correlations are lost forever. Simply, because some points are gone forever. Your vacuum, therefore, will be in a mixed state as long as you do not have access to those points, i.e.: while the acceleration continues.

Where do we physicists use to find mixed states? In systems at a finite temperature. Each possible pure state gets a probability which depends on the quotient between its energy and the temperature. The thermal bath plays the role of a hidden coin. So, after all, it was not so strange that the vacuum, as measured by the accelerated observer, is seen as a thermal state.

Thermal dependence with position

As we explained in the previous post, the acceleration of different points in the reference frame of the (accelerated) observer are different. They increase as you approach the horizon, and become infinite there. That means that it will be hotter near the horizon, infinitely hotter, in fact.

After our explanation regarding the loss of correlations with points behind the horizon, it is not hard to understand why the Unruh effect is stronger near it. Those are the points which are more strongly correlated with the lost points.

But from a thermodynamic point of view, it is very strange to think that different points of space have different temperatures. Shouldn’t they tend to equilibrate?

No. In general relativity, in curved spacetime we learn that a system can be perfectly at thermal equilibrium with different local temperatures. Consider the space surrounding a heavy planet. Let us say that particles near the surface at at a given temperature. Some of them will escape to the outer regions, but they will lose energy in order to do so, so they will reach colder. Thus, in equilibrium systems, the temperature is proportional to the strength of gravity… again, acceleration. Everything seems to come together nicely.

And Hawking radiation?

Hawking predicted that, if you stand at rest near a black hole, you will detect a thermal bath of particles, and it will get hotter as you approach the event horizon. Is that weird or not? To us, not any more. Because in order to remain at rest near a black hole, you need a strong supporting force behind your feet. You feel a strong acceleration, which is… your weight. The way to feel no acceleration is just to fall freely. And, in that case, you would detect no Hawking radiation at all. So, Hawking radiation is just a particular case of Unruh effect.

There is the feeling in the theoretical physics community that the Unruh effect is, somehow, more fundamental than it seems. This relation between thermal effects and acceleration sounds so strange, yet everything falls into its place so easily, from so many different points of view. It’s the basis of the so-called black hole information paradox, which we will discuss some other day. There have been several attempts to take Unruh quite seriously and determine a new physical theory, typically a quantum gravity theory, out of it. The most famous may be the case of Verlinde’s entropic gravity. But that’s enough for today, isn’t it?

For references, see: Crispino et al., “The Unruh effect and its applications”.

I’ll deliver a talk about our proposal for a quantum simulator of the Unruh effect in Madrid, CSIC, C/ Serrano 123, on Monday 14th, at 12:20. You are all very welcome to come and discuss!

Feeling acceleration (Rindler spacetime)

This is the first article of a series on the Unruh effect. The final aim is to discuss a new paper on which I am working with the ICFO guys, about a proposal for a quantum simulator to demonstrate how those things work. We are going to discuss some rather tough stuff: Rindler spacetime, quantum field theory in curved spacetime, Hawking radiation, inversion of statistics… and it gets mixed with all the funny stories of cold atoms in optical lattices. I’ll do my best to focus on the conceptual issues, leaving all the technicalities behind.

Our journey starts with special relativity. Remember Minkowski spacetime diagrams? The horizontal axis is space, the vertical one is time. The next figure depicts a particle undergoing constant acceleration rightwards. As time goes to infinity, the velocity approaches c, which is the diagonal line. But also, as time goes to minus infinity, the velocity approaches -c. We’ve arranged things so that, at time t=0, the particle is at x=1.

Minkowski diagram of an accelerated particle.

Minkowski diagram of an accelerated particle.

Now we are told that the particle is, really, a vehicle carrying our friend Alice inside. Since the real acceleration points rightwards, she feels a leftwards uniform gravity field. Her floor, therefore, is the left wall.


Alice in her left. Acceleration points rightwards, “gravity” points leftwards.

Are you ready for a nice paradox? This one is called Bell’s spaceship paradox. Now, imagine that Bob is also travelling with the same acceleration as Alice, but starting a bit behind her. Their trajectories can be seen in the figure


Alice and Bob travel with the same acceleration. Their distance, from our point of view, is constant.

From our point of view, they travel in parallel, their distance stays constant through time. So, we could have joined them with a rigid bar from the beginning. Wait, something weird happens now. As they gain speed, the rod shrinks for you… This is one of those typical paradoxes from special relativity, which only appear to be so because we don’t take into account that space and time measures depend on the point of view. This paradox is readily solved when we realize that, from Alice’s point of view, Bob lags behind! So, in order to keep up with her, and keep the distance constant, Bob should accelerate faster than her!

So, let us now shift to Alice’s point of view. Objects at a fixed location at her left move with higher acceleration than she does, and objects at her right move with lower acceleration. Her world must be pretty strange. How does physics look to her?

One of the fascinating things about general relativity is how it can be brought smoothly from special relativity when considering accelerating observers. In order to describe gravity, general relativity uses the concept of curved spacetime. In order to describe how Alice feels the world around her we can also use the concept of curved spacetime. It’s only logical, Mr Spock, since the principle of equivalence states that you can not distinguish acceleration from a (local) gravity field.

Fermi and Walker explained how to find the curved spacetime which describes how any accelerated observer feels space around her, no matter how complicated her trajectory is. The case of Alice is specially simple, but will serve as an illustration.

The basic idea is that of tetrad, the set of four vectors which, at each point, define the local reference frame. In German, they call them “vier-bein”, four-legs, which sounds nerdier. Look at the next figure. At any moment, Alice’s trajectory is described by a velocity 4-vector v. Any particle, it its own reference frame, has a velocity 4-vector (1,0,0,0). Therefore, we define Alice’s time-vector as v. What happens with space-vectors? They must be rotated so that the speed of light at her point is preserved. So, if the time-vector rotates a given angle, the space-vector rotates the same vector in the opposite direction, so the bisector stays fixed.


The local frames of reference for Alice, at two different times.

Now, each point can be given a different set of “Alice coordinates”, according to local time and local space from Alice point of view. But this change of coordinates is non-linear, and does funny things. The first problem appears when we realize that the space-like lines cross at a certain point! What can this mean? That it makes no sense to use this system of coordinates beyond that point. That point must be, somehow, special.

In fact, events at the left of the intersection point can not affect Alice in any way! In order to see why, just consider that, from our point of view, a light-ray emmited there will not intersect Alice’s trajectory. Everything at the left of the critical point is lost forever to her. Does this sound familiar? It should be: it is similar to the event horizon of a black hole.


Red: what Alice can’t see. Green: where Alice can’t be seen.

Let us assume that you did all the math in order to find out how does spacetime look to Alice. The result is called Rindler spacetime, described by the so-called Rindler metric. In case you see it around, it looks like this

ds^2=(ax)^2 dt^2 - dx^2 - dy^2 - dz^2

Don’t worry if you don’t really know what that means. Long story short: when Alice looks at points at her left (remember, gravity points leftwards), she sees a lower speed of light. Is that even possible? That is against the principle of relativity, isn’t it? No! The principle of relativity talks about inertial observers. Alice is not.

So, again: points at her left have lower speeds of light. Therefore, relativistic effects are “more notorious”. Even worse: as you move leftwards, this “local speed of light” decreases more and more… until it reaches zero! Exactly at the “special point”, where Alice coordinates behaved badly. What happens there? It’s an horizon! Where time stood still.


The world for Alice, Rindler spacetime: speed of light depends on position, and becomes zero at the horizon.

Imagine that Alice drops a ball, just opening her hand. It “falls” leftwards with acceleration. OK, OK, it’s really Alice leaving it behind, but we’re describing things from her point of view. Now imagine that Bob is inside the ball, trying to describe his experiences to Alice. Bob just feels normal, from his point of view… he’s just an inertial observer. But Alice sees Bob talking more and more slowly, as he approaches the horizon. Then, he friezes at that point. Less and less photons arrive, and they are highly redshifted (they lose energy), because they had to climb up against the gravitational potential. Finally, he becomes too dim to be recognized, and Alice loses sight of him.

That description would go, exactly, for somebody staying fixed near a black hole dropping a ball inside it. The event horizons are really similar. In both cases, the observer is accelerated: you must feel an acceleration in order to stay fixed near a black hole! As Wheeler used to say, the problem of weight is not a problem of gravitation. Gravitation only explains free fall. The problem of weight is a problem in solid state physics!!

For more information, see Misner, Thorne and Wheeler’s Gravitation, chapter 6. It’s a classic. I wish to thank Alessio, Jarek and Silvia for suffering my process of understanding…

Relativity for newbies (part I)

So, this is a post for little grasshoppers of physics that want to understand the basic ideas of special relativity without going too much into the math…

Let’s start easy, with Bob the scientific fisherman. He’s in his boat, looking at the waves which his fishing line creates as it oscillates in the water. When his boat advances slowly, he realizes that the forward waves move more slowly with respect to him. Kind of, his boat is trying to catch the waves.

Bob the scientific fisherman thinks: “Sure, the waves move with respect to the water with a fixed velocity. I may move, also with respect to the water even faster than that, if I row hard. Then I can overtake the waves”. That’s true, and this is what happens when you break the sound barrier.

Bob thinks even more: “By measuring how fast do the waves escape from me, I may know my velocity with respect to the water… If I am at rest with respect to the water, the velocity of the waves will be homogeneous from my point of view

“While, if I move, it will not be homogeneous, the waves will escape from me with a velocity that will depend on the direction.”

Bob went home happy. He had caught no fishes, but had acquired some wisdom…

In space nobody will hear you cry… because there is no water, nor air. But there are waves out there, anyway. There is light, and we can apply the same idea. Water waves move on water. What does light move on? Just to give it a name, people used to call it aether. Michelson and Morley in 1887 designed a very beautiful experiment to measure the velocity of the Earth with respect to this aether, by measuring the speed of light in different directions, just as Bob wanted to measure the speed of the water-waves in different directions to find out his velocity with respect to the water.

The experiment of Michelson and Morley was a complete failure. The speed of light was the same, no matter which direction you looked at.

So, there were various options: (a) the Earth is really at rest with respect to the aether. That’s a funny option: we know that the Earth moves around the Sun, at approximately 30 km/s!! And the Sun moves with respect to the galactic center, even faster… What’s the other option? It is (b): the Earth drags the aether as it moves. So to speak, the aether which is near us moves with our same speed, but the aether far away from us does not.

This last option is discarded because of stellar aberration. Let us explain it in simple terms. It’s raining, and there is no wind. The rain drops just fall vertically. You’re standing in the street, just holding your umbrella vertically so as not to get wet. OK. Now, you start moving. You should lean the umbrella forward a little bit if you want to remain dry. If you move in the opposite direction, you have to lean the umbrella in the opposite direction.

Now, let us establish the terms of the metaphor. The light from a certain star is the rain, and the telescope is the umbrella. Let us say that, with the Earth at rest, you have to point your telescope in the vertical direction in order to catch the light from your star. Now, the Earth starts moving. Then, you have to “lean” your telescope a little bit, in order not to lose the star. If the Earth moves in the opposite direction, the telescope has to lean in the opposite direction. This is what happens really: when changing from summer to winter, the positions of the stars change a little bit, exactly as predicted by this little story.

So, we know the Earth doesn’t drag the aether as it moves! Our two options are, therefore, invalid. Now, the patent office employee enters the game. But that’s another story that we will tell soon…

The exposition and images are taken from a talk I gave to high school students in 2005, for the centennial of the SR paper at IES Ágora, in Madrid.

Relativistic sex

Remember the paradox of the pole and the barn? It’s a classical paradox in special relativity, I read it in Taylor and Wheeler’s book so many years back (the world was young, the mills were white… ainssss). OK, returning. Consider a guy running with a horizontal pole traversing a barn which has a front and a back gate, both open. Let the barn rest-length be exactly the same as the rest-length of the barn.

Now, let’s speed things up. The guy with the pole runs through the barn at a speed close to that of light. From his point of view, the barn is coming towards him, so its length must shrink. Ehm… OK. Now, let’s stand by the barn, at rest with respect to it. The guy is coming so fast… the pole is shrinking from our point of view.

The question comes now: does the pole fit inside the barn or not? Well. The solution is not easy, but it is everywhere on the web. If you know it, continue reading. If you don’t, fight with it for a while…

So, spoiler alert! I assume that you’ve realized what is the answer.

Short story: simultaneity. The events of the front of the pole going through the front door and the rear of the pole going through the back door are connected via a space-like interval, so there can be no causal connection between them. Therefore, they may happen in one order to one observer, and in the reverse order to another observer. This is indeed what happens, so the question “does the pole fit in the barn?” is not frame-independent.

OK, now for the twist. Imagine a couple, boy and girl for simplicity. They’re going to make love. Let us assume that the penis fits in the vagina exactly, when measured at rest. Assume that the velocity of the penentration is close to the speed of light (come on, a little bit of imagination!). Now, girls have no “back door” so… how is the paradox solved? From his point of view, the vagina is too short, the penis doesn’t fit. From her point of view, the penis is too short, it will never reach the bottom…

What happens, really?

Bonus: for some extra fun, check the top 10 reasons which forbid relativistic sex.